欢迎光临 我们一直在努力
当前位置:考试 >考试问答 >

五年级数学下学期知识点,数学五年级下册所有知识大全

日期:来源:五年级数学下学期知识点收集编辑:考试

数学五年级下册所有知识大全

小学五年级数学下册复习教学知识点归纳总结,期末测试试题习题大全

人教版五年级(下册)数学知识点

一、图形的变换

1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。

3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。

二、因数与倍数

1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。

2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。

3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数。

4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。个位上是0或5的数,是5的倍数。一个数各位上的数的和是3的倍数,这个数就是3的倍数。

5、偶数与奇数:是2倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

6、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),最小的质数是2。一个数,如果除了1和它本身还有别的因数的数叫做合数,最小的合数是4。

三、长方体和正方体

1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。

2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

3、长方体的棱长总和=(长+宽+高)×4 正方体的棱长总和=棱长×12

4、表面积:长方体或正方体6个面的总面积叫做它的表面积。

5、长方体的表面积=(长×宽+长×高+宽×高)×2 S=(ab+ah+bh)×2

正方体的表面积=棱长×棱长×6 用字母表示:S=

6、表面积单位:平方厘米、平方分米、平方米 相邻单位的进率为100

7、体积:物体所占空间的大小叫做物体的体积。

8、长方体的体积=长×宽×高 用字母表示:V=abh 长=体积÷(宽×高) 宽=体积÷(长×高)

高=体积÷(长×宽)

正方体的体积=棱长×棱长×棱长 用字母表示:V= a×a×a

9、体积单位:立方厘米、立方分米和立方米 相邻单位的进率为1000

10、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积×高 V=Sh

11、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;

把低级单位聚成高级单位,用低级单位数除以进率。

12、容积:容器所能容纳物体的体积。

13、容积单位:升和毫升(L和ml) 1L=1000ml 1L=1000立方厘米 1ml=1立方厘米

14、容积的计算:长方体和正方体容器容积的计算方法跟体积的计算方法相同,但要从里面量长、宽、高。

四、分数的意义和性质

1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。

3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:a÷b= (b≠0)。

4、真分数和假分数:分子比分母小的分数叫做真分数,真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。由整数部分和分数部分组成的分数叫做带分数。

5、假分数与带分数的互化:把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。

6、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。

7、最大公因数:几个数共有的因数叫做它们的公因数,其中最大的一个叫做最大公因数。

8、互质数:公因数只有1的两个数叫做互质数。两个数互质的特殊判断方法:①1和任何大于1的自然数互质。②2和任何奇数都是互质数。③相邻的两个自然数是互质数。④相邻的两个奇数互质。⑤不相同的两个质数互质。⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。

9、最简分数:分子和分母只有公因数1的分数叫做最简分数。

10、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

11、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫做最小公倍数。

12、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

13、特殊情况下的最大公因数和最小公倍数:

①成倍数关系的两个数,最大公因数就是较小的数,最小公倍数就是较大的数。②互质的两个数,最大公因数就是1,最小公倍数就是它们的乘积。

14、分数的大小比较:同分母的分数,分子大的分数就大,分子小的分数就小;同分子的分数,分母大的分数反而小,分母小的分数反而大。

15、分数和小数的互化:小数化分数,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……,去掉小数点作分子,能约分的必须约成最简分数;分数化小数,用分子除以分母,除不尽的按要求保留几位小数。

五、分数的加法和减法

1、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。

2、异分母分数的加减法:异分母分数相加、减,先通分,再按照同分母分数加减法的方法进行计算。

3、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。在一个算式中,如果含有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。

六、打电话

1、逐个法:所需时间最多;

2、分组法:相对节约时间;

3、同时进行法:最节约时间。

1. 因为2×6=12,我们就说2和6是12的因数,12是2的倍数,也是6的倍数。不能单独说谁是倍数或因数

2. 求一个数的因数,用乘法一对一对找,写的时候一般都是从小到大排列的

3. 求一个数的倍数,用一个数去乘1、乘2、乘3、乘4……

4. 一个数的最小因数是1,最大的因数是它本身,一个数的因数的个数是有限的。

5. 一个数的最小的倍数是它本身,没有最大的倍数,一个数的倍数的个数是无限的。

6. 个位上是 0,2,4,6,8的数,都是2的倍数,也是偶数。

7. 自然数中,是2的倍数的数叫做偶数(0也是偶数)。不是2的倍数的数叫奇数。

8. 个位上是0或者5的数,都是5的倍数。

9. 个位是0的数,既是2的倍数,又是5的倍数。

10. 一个数各位上的和是3的倍数,这个数就是3的倍数。

11. 只有1和它本身两个因数的数叫做质数(或素数),除了1和它本身还有别的因数的数叫做合数。1既不是质数,也不是合数。

12. 整数按因数的个数来分类:1,质数,合数。整数按是否是2的倍数来分类:奇数,偶数

13. 将合数分解成几个质数相乘的形式就叫做分解质因数。分解质因数用短除法,把36分解质因数是?

14. 最小的质数是2,最小合数是4,最小奇数是1,最小偶数是0,同时是2,5,3倍数的最小数是30,最小三位数是120

15. 奇数加奇数等于偶数。奇数加偶数等于奇数。偶数加偶数等于偶数。

16. a是c的倍数,b是c的倍数,那么a+b的和是c的倍数,c是a+b和的因数,a-b的差是c的倍数,c是a-b差的因数。

17. 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。

18. 轴对称图形特征:对应点到对称轴的距离相等,对应点连线垂直于对称轴

19. 长方体有6个面。每个面都是长方形(可能有两个相对的面是正方形),相对的面大小相等(完全相同)。

20. 长方体有12条棱,分为三组,相对的4条棱长度相等。

21. 长方体有8个顶点。

22. 相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高

23. 正方体有6个面, 6个面都是正方形 ,6个面完全相等,正方体有12条棱, 12条棱长度都相等,正方体有8个顶点

24. 长方体棱长之和:(长+宽+高)×4 长×4+宽×4+高×4

25. 正方体棱长之和:棱长×12

26. 长方体(正方体)6个面的总面积,叫做它的表面积。

27. 长方体表面积=(长×宽+宽×高+长×高)×2 或长方体表面积=长×宽×2+宽×高×2+长×高×2

28. 正方体表面积=棱长×棱长×6

29. 计量体积要用体积单位,常用的体积单位有立方厘米,立方分米,立方米,可以分别写成cm3 dm3 m3

30. 棱长是1cm的正方体,体积是1 cm3,棱长是1cm的正方体,体积是1 dm3,棱长是1cm的正方体,体积是1 m3

31. 长方体所含体积单位的数量就是长方体的体积。长方体的体积=长×宽×高,v=abh;正方体体积=棱长×棱长×棱长,v=a3 =a×a×a a3表示3个a相乘

32. 相邻两个体积单位间的进率是1000,相邻两个面积单位间的进率是1000,相邻两个长度单位间的进率是10,1立方米=1000立方分米,1立方分米=1立方厘米,1升=1000毫升,1立方米=1000000立方厘米,计量容积一般用体积单位,计量液体的体积,用升和毫升

33. 一个物体、一些物体等都可以看作一个整体,一个整体可以用自然数1来表示,通常把它叫做单位“1”。

34. 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。例如:表示把单位“1”平均分成7份,表示这样的3份。其中表示一份的数叫做分数单位。

35. 米表示

(1) 把5米看作单位“1”,把单位“1”平均分成8份,表示这样的1份,就是米,算式:5÷8=(米)

(2) 把1米看作单位“1”,把单位“1”平均分成8份,表示这样的5份,就是米,算式:1÷8=(米),5个米就是米

36. 当整数除法得不到整数的商时,可以用分数表示除法的商。在用分数表示整数除法的商时,分数的分子相当于除法的被除数,分数的分母相当于除法的除数,除号相当于分数中的分数线。(除数不能为0)区别:分数是一种数,除法是一种运算

37. 分子比分母小的分数叫真分数,真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数,假分数大于或等于1。

38. 带分数包括整数部分和分数部分。假分数化成带分数,用分子除以分母所得的商作为带分数的整数部分,余数作为分子,分母不变。带分数化成假分数时,用整数部分和分母相乘再加分子所得结果作分子,分母不变。

39. A是B的几分之几?用A÷B

40. 分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。

41. 几个数公有的因数,叫做这几个数的公因数。其中最大的一个叫做这几个数的最大公因数。通常把每个数分解质因数,把它们所有的公有质因数相乘,来求最大公因数。

42. 如果两个数的公因数只有1,这两个数是互质数。两个连续自然数;两个质数;1和其他自然数一定是互质数。

43. 分子和分母只有公因数1的分数叫做最简分数。把一个分数化成和它相等,但分子分母比较小的分数,叫做约分。

44. 几个数公有的倍数,叫做这几个数的公倍数。其中最小的一个叫做这几个数的最小公倍数。通常把每个数分解质因数,把它们所有的公有质因数和独有质因数相乘,来求最小公倍数。

45. 把异分母分数分别化成和原来分数相等的同分母分数(公分母),叫做通分。

46. 求三个数的最大公因数和最小公倍数时,可以先求其中两个数的最大公因数和最小公倍数,用求出的最大公因数和最小公倍数再与第三个数求最大公因数和最小公倍数。

47. 如果两个数是倍数关系,那么两个数的最大公因数是较小数,最小公倍数是较大数。

48. 如果两个数公因数只有1,那么这两个数的最大公因数是1,最小公倍数是它们的乘积。

49. 两个数公因数只有1的几种特殊情况:1和其他自然数,相邻两个自然数,两个质数。

50. 分数化成小数:用分子除以分母化成小数。小数化成分数:把小数写成分母是10,100,1000……的分数,然后再化成最简分数。

参考资料: http://wenku.baidu.com/view/ed93b463f5335a8102d220c4.html

五年级下册数学重点

五年级下册数学知识要点:

第一单元:图形的变换

1. 轴对称图形:一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。这条直线叫做它的对称轴。

2. 轴对称图形的特征:1、对称点到对称轴的距离相等;2、对应点连线与对称轴互相垂直。

3. 旋转:图形或物体绕着一个点或一条轴运动的现象叫做旋转。

第二单元:因数与倍数

1. 因数和倍数:在整数乘法里,如果a×b=c,那么a和b是c的因数,c是a和b的倍数。

2. 为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)。但是0也是整数。

3. 一个数的最小因数是1,最大因数是它本身。一个数的因数的个数是有限的。

4. 一个数的最小倍数是它本身,没有最大的倍数。 一个数的倍数的个数是无限的。

5. 个位上是0、2、4、6、8的数都是2的倍数。个位上是0、5的数都是5的倍数。一个数,每个数位上的数的和是3的倍数,这个数就是3的倍数。

6. 自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

7. 最小的奇数是1,最小的偶数是0。最小的质数是2,最小的合数是4。

8.

四则运算中的奇偶规律:

奇数+奇数=偶数 奇数-奇数=偶数 奇数×奇数=奇数

偶数+偶数=偶数 偶数-偶数=偶数 偶数×偶数=偶数

奇数+偶数=奇数 奇数-偶数=奇数 奇数×偶数=偶数

偶数-奇数=奇数

9. 一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);如果除了1和它本身还有别的因数,这样的数叫做合数。

10. 1既不是质数,也不是合数。

11. 自然数按照因数的个数多少,可以分为1、质数、合数;按是否是2的倍数,可以分为奇数、偶数。

12. 100以内的质数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

第三单元:长方体和正方体

1. 正方体也叫立方体。

2. 长方体的特征是:①长方体有6个面;②每个面都是长方形(特殊情况下有两个相对的面是正方形);③相对的面完全相同;④有12条棱;⑤相对的棱长度相等;⑥有8个顶点。

3. 相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

4. 正方体可以看成是长、宽、高都相等的长方体。正方体是特殊的长方体。

5. 正方体的特征是:①正方体有6个面;②每个面都是正方形;③所有的面都完全相同;④有12条棱;⑤所有的棱长度都相等;⑥有8个顶点。

6. 长方体的棱长总和=(长+宽+高)×4

7. 正方体的棱长总和=棱长×12

8. 长方体六个面的面积总和叫做长方体的表面积。

9. 上面或下面面积=长×宽;前面或后面面积=长×高;左面或右面面积=宽×高。

10. 长方体的表面积=(长×宽+长×高+宽×高)×2

11. 正方体的表面积=棱长2×6

12. “有两个相对的面是正方形”的长方体表面积=正方形面的面积×2+长方形面的面积×4

13. 长方体的侧面积=底面周长×高

14. 物体所占空间的大小,叫做物体的体积。

15. 常用的体积单位有立方厘米,立方分米和立方米,可以分别写成cm3,dm3,和m3。

16. 棱长是1cm的正方体,体积是1cm3;棱长是1dm的正方体,体积是1dm3;棱长是1m的正方体,体积是1m3。

17. 长方体的体积=长×宽×高;用字母表示是V=abh

18. 正方体的体积=棱长3;用字母表示是V=a3

19. 长方体(或正方体)的体积=底面积×高=横截面积×长

20. 在工程上,1立方米简称1方。

21. 1个长方体或正方体,如果所有的棱长都扩大n倍,那么棱长总和也扩大n倍,表面积扩大n2倍,体积扩大n3倍。

22. 棱长总和相等的长方体或正方体,正方体的体积最大。

23. 1立方米=1000立方分米;1立方分米=1000立方厘米。

24. 每相邻两个长度单位间的进率是10;每相邻两个面积单位之间的进率是100;每相邻两个体积单位之间的进率是1000。

25. 容器所能容纳物体的体积,通常叫做它们的容积。计量容积,一般就用体积单位。

26. 计量液体的体积,常用的容积单位是升和毫升,也可以写成L和ml。

27. 1升相当于1立方分米,1毫升相当于1立方厘米,所以1升=1000毫升。

28. 长方体或正方体容器容积的计算方法,跟体积的计算方法相同,但要从容器里面量长、宽、高。所以容器的容积比体积要小一些。

29. 浸没在水中的物体的体积=现在水的体积-原来水的体积=容器的长×容器的宽×水面上升的高度

30. 怎样测量一个不规则的物体的体积呢?先在量杯里装上适量的水,记下水面对应的刻度,再把物体浸没在水中,再记下新的水面对应刻度。两次刻度的差,就是这个不规则物体的体积。

第四单元:分数的意义和性质

1. 一个物体或是几个物体组成的一个整体都可以用自然数1来表示,我们通常把它叫做单位“1”。

2. 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。例如3/7表示把单位“1”平均分成7份,取其中的3份。

3. 5/8米按分数的意义,表示:把1米平均分成8份,取其中的5份。按分数与除法的关系,表示:把5米平均分成8份,取其中的1份。

4. 把单位“1”平均分成若干份,表示其中一份的数叫分数单位。

5. 分数和除法的关系是:分数的分子相当于除法中的被除数,分数的分数线相当于除法中的除号,分数的分母相当于除法中的除数,分数的分数值相当于除法中的商。

6. 把一个整体平均分成若干份,求每份是多少,用除法。总数÷份数=每份数。

7. 求一个数量是另一个数量的几分之几,用除法。一个数量÷另一个数量=几分之几(几倍)。

8. 分子比分母小的分数叫真分数。真分数小于1。

9. 分子比分母大或分子和分母相等的分数叫做假分数。假分数大于1或等于1。

10. 带分数包括整数部分和分数部分,分数部分应当是真分数。带分数大于1。

11. 把假分数化成带分数的方法是用分子除以分母,商是整数部分,余数是分子,分母不变。把带分数化成假分数的方法是用整数部分乘分母的积加原来的分子作分子,分母不变。

12. 整数可以看成分母是1的假分数。例如5可以看成是5/1。

13. 分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。

14. 几个数公有的因数叫做这几个数的公因数,其中最大的公因数叫作它们的最大公因数。最小公因数一定是1。

15. 几个数公有的倍数叫做这几个数的公倍数,其中最小的公倍数叫作它们的最小公倍数。没有最大的公倍数。

16. 求最大公因数或最小公倍数可以用列举法,也可以用短除法分解质因数。

17. 公因数只有1的两个数叫做互质数。分子和分母是互质数的分数叫做最简分数。最简分数不一定是真分数。

18. 除法计算的结果可以用分数表示,比较方便。如果计算结果可以约分的话,要化简成最简分数。

19. 如果两个数是倍数关系,那么它们的最大公因数是较小的数,最小公倍数是较大的数。

20. 如果两个数是互质关系,那么它们的最大公因数是1,最小公倍数是它们的积。

21. 数A×数B=它们的最大公因数×它们的最小公倍数。

22. 两个数是互质数的几种特殊情况有:1、1和任何数都是互质数;2、两个相邻的自然数一定是互质数;3、两个相邻的奇数一定是互质数;4、两个不同的质数一定是互质数;5、一个质数和一个不是它倍数的合数一定是互质数。

23. 把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。把几个异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

24. 把分数化成小数的方法是用分子除以分母;把小数化成分数的方法是先写成分母是10、100……的分数,然后再进行约分。

25. 如果一个最简分数的分母除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数。

26. 两个数的最大公因数等于两个数公有的质因数的积;两个数的最小公倍数等于两个数公有的质因数×它们各自独有的质因数。

27. 两个数的公因数,都是这两个数的最大公因数的因数;两个数的公倍数,都是这两个数的最小公倍数的倍数。

此资料来源于网络。希望对你有帮助。

五年级数学下册

第一单元 图形的变换

第一课时

课题:轴对称

教学内容:教材第3~4页例1和例2。

教学目标:

1.通过画、剪、观察、想象、分类、找对称轴等系列活动,使学生正确认识轴对称图形的意义及特征;

2.掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴

3.培养和发展学生的实验操作能力,发现美和创造美的能力。

重点难点:会利用轴对称的知识画对称图形。

教学准备:

教学过程:

一、复习引入:

(1)欣赏下面的图形,并找出各个图形的对称轴。

(2)学生相互交流

你们还见过哪些轴对称图形?

(3)轴对称图形的概念:

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

(4)通过例题探究轴对称图形的性质:

例题1:

同学们用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,你能发现什么规律。

学生交流

教师:“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。

二、课内练习。

判断下面各图是否是轴对称图形,如果是,请指出它们的对称轴。

三、教学画对称图形。

例题2:

(1)引导学生思考:

A、怎样画?先画什么?再画什么?

B、每条线段都应该画多长?

(2) 在研究的基础上,让学生用铅笔试画。

(3) 通过课件演示画的全过程,帮助学生纠正不足。

四、练习:

1、课内练习一 -----第1、2题。

2、课外作业:

板书设计:

轴 对 称

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

教学反思:

第二课时

课题:旋 转

教学内容:教材第5~5页例3和例题4。

教学目标:

1、通过生活事例,使学生初步了解图形的平移变换和旋转变换。并能正确判断图形的这两种变换。结合学生的生活实际, 初步感知平移和旋转现象 。

2、通过动手操作,使学生会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。

3、初步渗透变换的数学思想方法。

重点难点:能正确区别平移和旋转的现象,并能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。

教学准备:幻灯片、课件。

教学过程:

一、导入

课件出现游乐场情景:摩天轮、穿梭机、旋转木马;滑滑梯、推车、小火车、速滑。

游乐园里各种游乐项目的运动变化相同吗?

你能根据他们不同的运动变化分分类吗?

在游乐园里,像滑滑梯、小朋友推车、小火车的直行、速滑这些物体都是沿着直线移动这样的现象叫做平移(板书:平移)。

而摩天轮、穿梭机、旋转木马,这些物体都绕着一个点或一个轴移动这样的现象,我们把他叫做旋转(板书:旋转)。

今天我们就一起来学习“旋转”。板书课题。

二、学习新课

1、生活中的平移。

平移和旋转都是物体或图形的位置变化。平移就是物体沿着直线移动。

在生活中你见过哪些平移现象?先说给你同组的小朋友听听!再请学生回答。

说得真棒,瞧,我们见过的电梯,它的上升、下降,都是沿着一条直线移动就是平移。

你们想亲身体验一下平移吗?

全体起立,我们一起来,向左平移2步,向右平移2步。我们生活中的平移现象可多了,能用你桌上的物体做平移运动吗?

2、生活中的旋转:

你们真是聪明的孩子,不仅认识了平移的现象还学会了平移的方法。刚才我们还见到了另一种现象,是什么呀?(旋转)

旋转就是物体绕着某一个点或轴运动。

“你见过哪些旋转现象?”先说给同桌听听,然后汇报。

像钟面的指针,指南针它们都绕着一个点移动,这些都是旋转现象。

同学们的思维真开阔,下面我们一起来体验一下旋转的现象吧!起立,一起来左转2圈,右转2圈。旋转可真有意思,你能用你周围的物体体验一下旋转吗?现在就让我们一起来轻松轻松,去看看生活中的平移和旋转吧!

3.学习例题3:

(1)与学生共同完成其中的一道题,余下的由学生独立完成。

(2)对于有错误的学生,在全班进行讲评。

4.学习例题4:

(1) 引导学生数时要找准物体的一个点,再看这个点通过旋转后到什么位置,再来数一数经过多少格。

(2)先让学生说一说画图的步骤,再来画图。

(3)让学生学会先选择几个点,把位置定下来,再来画图。

(4)课件演示画图过程,并帮助学生订正。

5.课内练习:

2.第6页2题。

3.第9页4题、

课后作业:

板书设计: 旋 转

平移和旋转都是物体或图形的位置变化。

平移就是物体沿直线移动。

旋转就是物体绕着某一个点或轴运动

教学反思:

第三课时

课题: 欣 赏 设 计

教学内容:教材第7~11页。

教学目标:

1.通过欣赏与设计图案,使学生进一步熟悉已学过的对称、平移、旋转等现象。

2.欣赏美丽的对称图形,并能自己设计图案。

3.学生感受图形的美,进而培养学生的空间想象能力和审美意识。

重点难点:

1.能利用对称、平移、旋转等方法绘制精美的图案。

2.感受图形的内在美,培养学生的审美情趣。

教学准备:幻灯片、课件。

教学过程

一、情境导入

利用课件显示课本第7页四幅美丽的图案,配音乐,让学生欣赏。

二、学习新课

(一)图案欣赏:

1、伴着动听的音乐,我们欣赏了这四幅美丽的图案,你有什么感受?

2、让学生尽情发表自己的感受。

(二)说一说:

1、上面每幅图的图案是由哪个图形平移或旋转得到的?

2.上面哪幅图是对称的?先让学生边观察讨论,再进行交流。

三、巩固练习

(一)反馈练习:

完成第8页3题。

1、这个图案我们应该怎样画?

2、仔细观察这几个图案是由哪个图形经过什么变换得到的?

(二)拓展练习:

1、分别利用对称、平移和旋转创作一个图案。

2、 交流并欣赏。说一说好在哪里?

四、全课总结

对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉及到其它领域,希望同学们平时注意观察,都成为杰出的设计师。

五、布置作业:

教材第9页第5题。

板书设计:

欣赏和设计

图案1 图案2

图案3 图案4

对称、平移和旋转知识有广泛的应用。

教学反思:

第四课时

课题:欣赏与设计练习课

教学内容:教材第8~11页。

教学目标

1.通过收集图案,小组交流,感受图案的美,并为自己以后创作图案提供借鉴。

2.通过欣赏图案,发展学生的审美意识和空间观念。

3.自己经历创作实践的整个过程,感受创作的乐趣,进一步培养学生的审美情趣。

重点难点 :

1.进一步利用对称、平移、旋转等方法绘制精美的图案。

2.加深感受图形的内在美,培养学生的审美情趣。

教学准备:

课件、方格纸、正方形白板纸、手工纸三张及剪刀等。

教学过程:

一、展览导入

课前让学生收集图案,以小组为单位进行交流。

思考:这些图案是怎样设计的,它有什么特点?

指名介绍本组中最美的图案,并结合思考说一说它的特点。

二、学习新课

(一)尝试创造:

让学生做第8页第1、2题。

1、鼓励学生用学过的图形设计图案,对不同的学生提出不同的要求。

2、交流时,教师对有创意、绘图美观的同学给予表扬和激励。

(二)设计图案:

做第10页“实践活动”7题。

1、 提出三个步骤:

(1)先选择一个喜欢的图形;

(2)再确定你选用的对称、平移和旋转的方法;

(3)动手绘制图案。

2、分别利用对称、平移和旋转创作一个图案后,全班交流。

三、巩固练习

(一)反馈练习:

1、制作“雪花”:

取一张正方形纸,按书上所示的方法对折和剪裁。可以经过多次练习,直到会剪一朵美丽的“雪花”。

2.作品展示。

3、独立观察并尝试做第9页第5题。

四、全课总结

全班交流各自的作品,选出好的作品互相评价,全班展览。

板书设计:

欣赏和设计练习课

图片1 图片2

教学反思:

第二单元 因数和倍数

第一课时

课题:因数和倍数

教学目标:

1、学生掌握找一个数的因数,倍数的方法;

2、学生能了解一个数的因数是有限的,倍数是无限的;

3、能熟练地找一个数的因数和倍数;

4、培养学生的观察能力。

教学重点:掌握找一个数的因数和倍数的方法。

教学难点:能熟练地找一个数的因数和倍数。

教学过程:

一、引入新课。

1、出示主题图,让学生各列一道乘法算式。

2、师:看你能不能读懂下面的算式?

出示:因为2×6=12

所以2是12的因数,6也是12的因数;

12是2的倍数,12也是6的倍数。

3、师:你能不能用同样的方法说说另一道算式?

(指名生说一说)

师:你有没有明白因数和倍数的关系了?

那你还能找出12的其他因数吗?

4、你能不能写一个算式来考考同桌?学生写算式。

师:谁来出一个算式考考全班同学?

5、师:今天我们就来学习因数和倍数。(出示课题:因数 倍数)

齐读p12的注意。

二、新授:

(一)找因数:

1、出示例1:18的因数有哪几个?

从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?

学生尝试完成:汇报

(18的因数有: 1,2,3,6,9,18)

师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

2、用这样的方法,请你再找一找36的因数有那些?

汇报36的因数有: 1,2,3,4,6,9,12,18,36

师:你是怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)

师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

仔细看看,36的因数中,最小的是几,最大的是几?

看来,任何一个数的因数,最小的一定是( ),而最大的一定是( )。

3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。

4、其实写一个数的因数除了这样写以外,还可以用集合表示:如

18的因数

小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

(二)找倍数:

1、我们一起找到了18的因数,那2的倍数你能找出来吗?

汇报:2、4、6、8、10、16、……

师:为什么找不完?

你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)

那么2的倍数最小是几?最大的你能找到吗?

2、让学生完成做一做1、2小题:找3和5的倍数。

汇报 3的倍数有:3,6,9,12

师:这样写可以吗?为什么?应该怎么改呢?

改写成:3的倍数有:3,6,9,12,……

你是怎么找的?(用3分别乘以1,2,3,……倍)

5的倍数有:5,10,15,20,……

师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示

2的倍数 3的倍数 5的倍数

师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)

三、课堂小结:

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

四、独立作业:

完成练习二1~4题

教学反思:

第二课时

课题:2、5的倍数的特征

教学目标:

1、掌握 2 、 5 倍数的特征

2、理解并掌握奇数和偶数的概念。

3、能运用这些特征进行判断。

4、培养学生的概括能力。

教学重点和难点:

1、是2 、5 倍数的数的特征。

2、奇数和偶数的概念。

教学用具:投影片。

教学过程:

一、复习准备

1、提问。

① 说出 20 的全部因数。

② 说出 5 个 8 的倍数。

③ 26 的最小因数是几?最大因数是几?最小的倍数是几?

2、按要求在集合圈里填上数。

二、 学习新课:

(一)2 的倍数的特征。

1、教师:(练习 2) 右边集合圈里的数与左边圈里的数是什么关系?

教师:请观察右边圈里的数,它们的个位数有什么特点?

( 个位上是 0,2,4,6,8。)

教师:请再举出几个2的倍数,看看符不符合这个特点?

学生随口举例。

教师:谁能说一说是2的倍数的数的特征?

学生口答后老师板书:个位上是 0,2,4,6,8的数,都是2的倍数。

2、口答练习:(投影片)请把下面的数按要求填在圈内(是2的倍数,不是2的倍数)

1,3,4,11,14,20,23,24,28,31,401,826,740,1000,6431。

学生口答完后,老师介绍:奇数和偶数的定义

板书:上面两个集合圈上补写出 “ 偶数 ”,“ 奇数 ”。

教师:上面两个集合圈里该不该打省略号?为什么?

学生讨论后老师说明:

在本题所列的有限个数里,奇数、偶数都是有限的,但是自然数是无限的,奇数、偶数也是无限的,所以集合圈里要写上省略号。

教师:奇数、偶数在我们日常生活中你遇到过吗?习惯上称它们为什么数? (单数、双数。)

3、练习:( 先分小组小说,再全班统一回答。)

① 说出5个2的倍数。(要求:两位数。)

② 说出3个不是2的倍数的三位数。

③ 说出 15 ~ 35 以内的偶数。

④ 50以内的偶数有多少个?奇数有多少个?

(二)5 的倍数的特征。

1、教师先在黑板上画出两个集合圈,然后提出要求:你们能不能用与研究2的倍数的特征的相同方法,找出 5 的倍数的特征?

学生自己动手填数、观察、讨论。老师巡视过程中选一位同学板书填空。

教师:说一说5的倍数的特征?

教师:请举几个多位数验证。

教师:再说一说什么样的数是5的倍数。

板书:个位上是0或者5的数,都是5的倍数。

2、练习:

① 按从小到大的顺序,说出50以内5的倍数。

② (投影片)下面哪些数是5的倍数?

240,345,431,490,545,543,709,725,815,922,986,990。

③(投影片)从下面的数中挑出既是2的倍数,又是5的倍数的数。这些数有什么特点?

12,25,40,80,275,320,694,720,886,3100,3125,3004。

学生口答后教师板书:个位数字是 0 。

④ 教师随口说出数,请立即说出这个数是2的倍数还是5的倍数,或者同时是2和5的倍数,并说明判断的依据。

三、巩固反馈:

1 、在1~100的自然数中,2的倍数有( )个,5的倍数数有( )个。

2 、比75小,比50大的奇数有( )。

3 、个位是( )的数同时是2和5的倍数。

4 、用 0 , 7 , 4 , 5 , 9 五个数字组成 2的倍数;5的倍数;同时是 2 和 5 的倍数的数。

四、全课总结:这节课你学会了什么?有什么收获?

教学反思:

第三课时

课题:3的倍数的特征

教学目标:

1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。

2、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。

教学重、难点:是3的倍数的数的特征。

教学过程:

一、提出课题,寻找3的特征。

师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜测一下?

生1:个位上是3、6、9的数是3的倍数。

生2:不对,个位上是3、6、9的数不定是3的倍数,如l 3、l 6、19都不是3的倍数。

生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。

师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)

师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)

二、自主探索,总结3的特征师:

先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生利用p18的表。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)

师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。

学生同桌交流后,再组织全班交流。

生1:我发现10以内的数只有3、6、9是3的倍数。

生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。

生3:我全部看了一下,刚才前面这位同学的猜想是不对的,3的倍数个位上0~9这十个数字都有可能。

师:个位上的数字没有什么规律,那么十位上的数有规律吗?

生:也没有规律,1~9这些数字都出现了。

师:其他同学还有什么发现吗?

生:我发现3的倍数按一条一条斜线排列很有规律。

师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?

生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。

师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?

生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。

师:这是一个重大发现,其他斜线呢?

生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。

生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。

生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。

师:现在谁能归纳一下3的倍数有什么特征呢?

生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。

师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?

生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。

师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。

学生先自己写数并验证,然后小组交流,得出了同样的结论。

全班齐读书上的结论。

三、巩固练习:

完成p19做一做

四、课堂小结:

这节课你有什么收获

教学反思:

第四课时

课题:质数和合数

教学目标:

1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。2、培养学生自主探索、独立思考、合作交流的能力。

3、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。

教学重点:

1、理解掌握质数、合数的概念。

2、初步学会准确判断一个数是质数还是合数。

教学难点:区分奇数、质数、偶数、合数。

教学过程:

一、探究发现,总结概念:

1、师:(出示三个同样的小正方形)每个正方形的边长为1,用这样的三个正方形拼成一个长方形,你能拼出几个不同的长方形?

学生独立思考,然后全班交流。

2、师:这样的四个小正方形能拼出几个不同的长方形?

学生各自独立思考,想像后举手回答。

3、师:同学们再想一下,如果有12个这样的小正方形,你能拼出几个不同的长方形?

师:我看到许多同学不用画就已经知道了。(指名说一说)

4、师:同学们,如果给出的正方形的个数越多,那拼出的不同的长方形的个数——,你觉得会怎么样?

学生几乎是异口同声地说:会越多。

师:确定吗?(引导学生展开讨论。)

5、师:同学们,用小正方形拼长方形,有时只能拼出一种,有时拼出的长方形不止一种。你觉得当小正方形的个数是什么数的时候,只能拼一种? 什么情况下拼得的长方形不止一种?并举例说明。

先让学生小组讨论,然后全班交流,师根据学生的回答板书。

师:同学们,像上面这些数(板书的3、13、7、5、11等数),在数学上我们把它们叫做质数,下面的这些数(4、6、8、9、10、12、14、15等数)我们把它们叫做合数。那究竟什么样的数叫质数,什么样的数叫合数呢?

学生独立思考后,在小组内进行交流,然后再全班交流。

引导学生总结质数和合数的概念,结合学生回答,教师板书:(略)

6、让学生举例说说哪些数是质数,哪些数是合数,并说出理由。

7、师:那你们认为“1”是什么数?

让学生独立思考,后展开讨论。

二、动手操作,制质数表。

1、师出示:73。让学生思考着它是不是质数。

师:要想马上知道73是什么数还真不容易。如果有质数表可查就方便了。(同学们都说“是呀”。)

师:这表从哪来呢?

(教师出示百以内数表)这上面是1到100这100个数,它不是质数表,你们能不能想办法找出100以内的质数,制成质数表?谁来说说自己的想法?(让学生充分发表自己的想法。)

2、让学生动手制作质数表。

3、集体交流方法。

三、练习巩固:

完成练习四第1、2题。

四、课题小结:

这节课你在激烈的讨论中有什么收获

希望能解决您的问题。

五年级下册全册数学知识整理(写重点)

五年级《数学》下册知识要点

一、图形的变换

⒈轴对称的意义。

如果一个图形沿着一条直线对折,直线两侧的部分能够完全重合,那么这个图形就叫做轴对称图形。折痕所在的这条直线叫做对称轴。

如果一个图形沿着一条翻折过去,如果它能够与另一个图形重合,那么这两个图形就关于这条直线成轴对称。

⒉成轴对称的图形的性质。

成轴对称的图形的对应点到对称轴的距离相等。

⒊旋转的意义与性质。

旋转就是物体围绕着某一个点或某条轴做圆周运动。

图形旋转后,大小形状不变,只是位置发生了变化。

图形旋转的三要素:绕哪个点旋转、旋转的方向(顺时针还是逆时针)、旋转的度数。

二、因数与倍数

⒈因数和倍数的意义。

如果a×b=c(a、b、c均为不等于0的整数),那么a、b就叫做c的因数,c就叫做a、b的倍数。

⒉因数和倍数的关系:因数和倍数是相互依存的。

1是所有非零自然数的因数。

⒊一个数的因数和倍数的特征。

一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

⒋2、5、3的倍数的特征。

个位上是0、2、4、6、8的数,都是2的倍数。在自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。

个位上是0或5的数,都是5的倍数。

一个数各位上的数字的和是3的倍数,这个数就是3的倍数。

个位上是0,且各个数位上的数的和是3的倍数,这样的数同时是2、5、3的倍数。

⒌质数和合数的意义。

一个数如果只有1和它本身两个因数,那么这样的数就叫做质数(也叫素数)。

(100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、53、59、61、67、71、73、79、83、89、97)

一个数除了1和它本身还有别的因数,那么这样的数就叫做合数。

⒍分解质因数的意义。

⑴把一个合数写成几个质数相乘的形式,叫做分解质因数。

⑵分解质因数的方法

⒎自然数分为:奇数、偶数(或分为质数、合数、1)

⒏最小的自然数是0,最小的奇数是1,最小的偶数是0,最小的质数是2,最小的合数是4。

⒐最小公倍数,最大公因数的特殊情况:

⑴两个数中,其中一个数是另一个数的倍数,则两数的最大公因数是小数,最小公倍数是大数。

⑵两个只有公因数1的数的最大公因数是1,最小公倍数是两数的乘积。

三、长方体和正方体

⒈长方体和正方体的特征。

长方体有6个面,都是长方形(特殊情况有两个相对的面是正方形),相对的面完全相同;有12条棱,相对的棱长度相等;有8个顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。习惯上,把底面中较长的棱叫做长,较短的棱叫做宽,和底面垂直的棱叫做高。

正方体有6个面,都是正方形,6个面完全相同;有12条棱,长度都相等;有8个顶点。

⒉长方体和正方体的关系。

正方体可以看作是长、宽、高都相等的特殊的长方体。

⒊长方体和正方体的棱长总和的计算方法。

长方体的棱长总和=长×4+宽×4+高×4或=(长+宽+高)×4

正方体的棱长总和=棱长×12

⒋长方体和正方体的表面积的意义及计算方法。

长方体或正方体6个面的总面积,叫做它的表面积。

长方体的表面积=长×高×2+长×宽×2+宽×高×2

或长方体的表面积=(长×高+长×宽+宽×高)×2 即:S(长方体)=2(ah+ab+bh)

正方体的表面积=棱长×棱长×6 即:S(正方体)=6a2

⒌体积的含义、常用的体积单位及体积单位间的进率。

物体所占空间的大小叫做物体的体积。

常用的体积单位有立方米(m3)、立方分米(dm3)和立方厘米(cm3)。

每相邻两个体积单位之间的进率是1000.即:

1立方米=1000立方分米=1000000立方厘米

1立方分米(升)=1000立方厘米(毫升)

⒍长方体和正方体的体积计算方法。

长方体的体积=长×宽×高 即:V(长方体)=abh

正方体的体积=棱长×棱长×棱长 即:V(正方体)=a3

长方体或正方体的体积=底面积×高 即:V=Sh

⒎容积及容积单位。

箱子、油桶、仓库等容器所能容纳物体的体积,叫做它们的容积。

计量容积,一般用体积单位,而计量液体的体积则用容积单位升和毫升。

长方体或正方体容器容积的计算方法与体积的计算方法相同。

四、分数的意义和性质

⒈单位“1”的含义。

一个物体,一个计量单位或许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。

⒉分数及分数单位的意义。

把单位“1”平均分成若干份,表示这样的一份或几份的数就叫做分数。

把单位“1”平均分成若干份,表示其中一份的数叫做这个分数的分数单位。

⒊分数与除法的关系。

被除数÷除数=被除数/除数(除数≠0) a÷b=a/b(b≠0)

⒋真分数、假分数的意义和特征,以及假分数与整数和带分数互化的方法。

分子比分母小的分数叫做真分数。(真分数小于1)

分子比分母大或者分子和分母相等的分数,叫做假分数。(假分数大于或者等于1)

一个自然数和一个真分数合成的数,叫做带分数。(带分数大于1)

把整数(0除外)化成假分数的方法:,用整数(0除外)与指定分母的积作分子,指定的分母(0除外)作分母。

把假分数化成整数或带分数的方法:用假分数的分子除以分母,能整除的,则化成整数;不能整除的,则化成带分数,所得的商就是带分数的整数部分,余数是分数部分的分子,分母不变。

把带分数化成假分数,用整数部分乘分母再加上分子所得的数作分子,分母不变。

⒌分数的基本性质。

分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

⒍公因数、最大公因数和公倍数、最小公倍数的意义及求法。

几个数公有的因数叫做它们的公因数;其中最大的一个叫做它们的最大公因数。

几个数公有的倍数叫做它们的公倍数;其中最小的一个叫做它们的最小公倍数。

公约数只有1的两个数,叫做互质数。

最大公因数和最小公倍数可以用列举法求,也可以用分解质因数的方法求。

求两个数的最大公因数的方法:一般先用这两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来(乘半边)。

求两个数的最小公倍数的方法:一般先用这两个数公有的质因数连续去除(一般从最小的开始),一直除到所得的商是互质数为止,然后把所有的除数和商连乘起来。

⒎ 最简分数、约分、通分的意义。

分子、分母只有公因数1的分数,叫做最简分数。

最简分数的分母中只含有质因数2或5的数能化成有限小数。

把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

把异分母分别化成和原来相等的同分母分数,叫做通分。

⒏分数和小数的互化。

把小数化成分数,根据小数的意义直接把小数写成分母是10、100、1000……的分数,再化简。

把分数化成小数,则根据分数与除法的关系去化,用分数的分子除以分母,除不尽的按要求写出近似值。

五、分数的加法和减法

⒈分数的加法和减法的意义。

分数加法的意义与整数加法的意义相同,都是把两个数合并成一个数的运算。

分数减法的意义与整数减法的意义相同,都是已知两个加数的和与其中一个加数,求另一个加数的运算。

⒉同分母分数加、减法的计算法则。

同分母分数相加、减,分母不变,只把分子相加减。

⒊异分母分数的加、减法的计算法则。

异分母分数相加、减,先通分,然后按照同分母分数加、减法的法则来计算。

⒋分数加、减法的验算方法。

分数加、减法的验算方法与整数加、减法的验算方法相同。

⒌分数加减混和运算的运算顺序。

分数加减混和运算的运算顺序和整数加减混和运算的运算顺序相同,都是按从左到右的顺序依次计算。

⒍整数加法的运算定律在分数加法中的应用。

整数的加法交换律和加法结合律在分数中同样适用,应用它们可以使一些计算简便。

⒎分子是1的分数加(减)法法则:分母的乘积作积的分母,分母的和(差)作积的分子。

六、统计

⒈众数。

在一组数据中出现次数最多的数叫做这组数据的众数。众数能够反映一组数据的集中情况。

⒉平均数、中位数和众数的区别。

平均数能够最为充分地反映一组数据所包含的信息,它与这组数据中的每一个数据都有关系,在进行统计推断时有重要的作用,但容易受到极端数据的影响。

中位数在一组数据的数值排序中处于中间的位置,不受偏大或偏小数据的影响,能够反映一组数据的中等水平。

众数着眼于对一组数据中各数据出现的次数的考察,它的大小只与一组数据中的部分数据有关,可以用来表示一组数据多数的水平。

⒊复式折线统计图

复式折线统计图和单式折线统计图相同,不但可以表示出数量的多少,而且能够清楚地表示出数量增减变化情况。

⒋把生活、生产和科研中统计的数据填写在一定格式的表格内,用来反映情况,说明某个问题。这种表格就叫做统计表。

统计表的种类很多,通常按表内项目的多少分为单式统计表和复式统计表两种。只统计一个项目的统计表叫做单式统计表。统计两个或两个以上项目的统计表叫做复式统计表。

用点、线、面积等来表示相关的量之间数量关系的图形叫做统计图,统计图比统计表形象具体,能直观反映出事物在数量方面的发展变化和总体与部分之间的关系。

条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按照一定的顺序排列起来。(特点:用直条的长短表示数量的多少。容易看出各种数量的多少,便于相互比较。)

折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。(特点:用折线起伏表示数量的增减变化。不但可以表示出数量的多少,而且能够清楚地表示出数量增减变化的情况。)

七、数学广角

⒈找次品的最优策略。

找次品的最优策略有两点:一是把待测物品分成3份;二是要分得尽量平均,能够平均分的就平均分成3份,不能平均分的,也应该使多的一份与少的一份只相差1。

⒉找次品的规律。

人们在实验中发现用天平找次品时,所测物品数目与待测的次数有一定的关系。

五年级下册数学总结(人教版)

人教版五年级下册数学复习提纲

第一单元 观察物体

1、长方体(或正方体)放在桌子上,从不同角度观察,一次最多能看到3个面(或说成:最多同时能看到3个面)。

2、给出一个(或两个)方向观察的图形无法确定立体图形的形状。 由三个方向观察到的图形就可以确定立体图形的形状并还原立体图形。

3、从一个方向看到的图形摆立体图形,有多种摆法。

4、从多个角度观察立体图形

先根据平面图分析出要拼搭的立体图形有几层; 然后确定要拼搭的立体图形有几排;

最后根据平面图形确定每层和每排的小正方体的个数。

二 因数和倍数

1、整除:被除数、除数和商都是自然数,并且没有余数。 大数能被小数整除时,大数是小数的倍数,小数是大数的因数。 找因数的方法:

一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。 一个数的倍数的个数是无限的,最小的倍数是它本身。

2、自然数按能不能被2整除来分:奇数 偶数 奇数:不能被2整除的数 偶数:能被2整除的数。

最小的奇数是1,最小的偶数是0.

个位上是0,2,4,6,8的数都是2的倍数。 个位上是0或5的数,是5的倍数。

一个数各位上的数的和是3的倍数,这个数就是3的倍数。

能同时被2、3、5整除的最大的两位数是90,最小的三位数是120。

3、自然数按因数的个数来分:质数、合数、1. 质数:有且只有两个因数,1和它本身 合数:至少有三个因数,1、它本身、别的因数 1: 只有1个因数。“1”既不是质数,也不是合数。 最小的质数是2,最小的合数是4。

20以内的质数:有8个(2、3、5、7、11、13、17、19)

100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、

43、47、53、59、61、67、71、73、79、83、89、97

4、分解质因数

用短除法分解质因数 (一个合数写成几个质数相乘的形式) 5、公因数、最大公因数

几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。

2

用短除法求两个数或三个数的最大公因数 (除到互质为止,把所有的除数连乘起来)

几个数的公因数只有1,就说这几个数互质。 两数互质的特殊情况:

⑴1和任何自然数互质;⑵相邻两个自然数互质; ⑶两个质数一定互质; ⑷2和所有奇数互质; ⑸质数与比它小的合数互质;

如果两数是倍数关系时,那么较小的数就是它们的最大公因数。 如果两数互质时,那么1就是它们的最大公因数。 6、公倍数、最小公倍数

几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。

用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来) 用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来) 如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。 如果两数互质时,那么它们的积就是它们的最小公倍数。

三 长方体和正方体

【概念】

1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。在一个长方体中,相对面完全相同,相对的棱长度相等。

2、两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

3、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。正方体有12条棱,它们的长度都相等,所有的面都完全相同。

4、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

5、长方体有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。正方体有6个面,每个面都是正方形,每个面的面积都相等,有12条棱,每条的棱的长度都相等。

长方体的棱长总和=(长+宽+高)×4 L=(a+b+h)×4 长=棱长总和÷4-宽 -高 a=L÷4-b-h 宽=棱长总和÷4-长 -高 b=L÷4-a-h 高=棱长总和÷4-长 -宽 h=L÷4-a-b 正方体的棱长总和=棱长×12 L=a×12 正方体的棱长=棱长总和÷12 a=L÷12

6、长方体或正方体6个面和总面积叫做它的表面积。

长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) 无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2

S=2(ab+ah+bh)-ab S=2(ah+bh)+ab

无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh) 正方体的表面积=棱长×棱长×6 S=a×a×6 6、物体所占空间的大小叫做物体的体积。 长方体的体积=长×宽×高 V=abh 长=体积÷宽÷高 a=V÷b÷h

宽=体积÷长÷高 b=V÷a÷h 高=体积÷长÷宽 h= V÷a÷b

正方体的体积=棱长×棱长×棱长 V=a×a×a= a3

7、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。 常用的容积单位有升和毫升也可以写成L和ml。

1升=1立方分米 1毫升=1立方厘米 1升=1000毫升 8、a3读作“a的立方”表示3个a相乘,(即a·a·a) 【体积单位换算】 高级单位 低级单位

低级单位 高级单位

进率: 1立方米=1000立方分米=1000000立方厘米 1立方分米=1000立方厘米=1升=1000毫升

1立方厘米=1毫升

1平方米=100平方分米=10000平方厘米 1平方千米=100公顷=1000000平方米

重量单位进率,时间单位进率,长度单位进率 计算不规则物体的体积:

×进率

÷进率 ① 容器的底面积×上升那部分水的高度。

计算方法

② 放入物体后的体积 — 原来水的体积 被浸没物体的体积等于

上升那部分水的体积

四 分数的意义和性质

分数的产生

分数的意义 分数与意义 :把单位1平均分成几份,表示其中的一份或几份

分数与除法 :分子(被除数),分母(除数),分数值(商)

真分数 真分数小于1

真分数与假分数 假分数 假分数大于1或等于1.

带分数 (整数部分和真分数)

假分数化带分数、整数(分子除以分母,商作整数部分 余数作分子)

分数的基本性质:分数的分子、分母同时扩大或缩小相同的倍数,

分数的基本性质 分数的大小不变。

通分、通分子:化成分母不同,大小不变的分数(通分)

最大公因数

约 分 求最大公因数

最简分数 分子分母互质的分数(最简真分数、最简假分数) 约分及其方法 最小公倍数

通 分 求最小公倍数

分数比大小 (通分、通分子、化成小数) 通分及其方法

小数化分数 小数化成分母是10、100、1000的分数再化简

分数和小数的互化

分数化小数 分子除以分母,除不尽的取近似值

最简分数的分母只含有质因数2和5,这个分数一定能化成有限小数。 分数化简包括两步:一是约分;二是把假分数化成整数或带分数。

21=0.5 41=0.25 43=0.75 51=0.2 52=0.4 53=0.6 54

=0.8 81=0.125 83=0.375 85=0.625 87=0.875 201=0.05 25

1=0.04。

五 物体的运动

一、平移 物体或图形平移后本身的形状、大小和方向都不会改变。

二、轴对称 1、轴对称图形: 把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。 2、轴对称图形的特征和性质: ①对应点到对称轴的距离相等; ②对应点的连线与对称轴垂直; ③对称轴两边的图形大小、形状完全相同。

三、 旋转 1、物体旋转时应抓住三点:① 旋转中心; ② 旋转方向; ③ 旋转角度。 2、旋转只改变物体的位置(旋转中心位置不会变),不改变物体的形状、大小。

六 分数的加法和减法

同分母分数加、减法 (分母不变,分子相加减 )

分数数的加法和减法 异分母分数加、减法 (通分后再加减)

分数加减混合运算

带分数加减法: 带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。

七 统计与数学广角

众数 一组数据中出现次数最多的数叫众数。

众数能够反映一组数据的集中情况。

统计 在一组数据中,众数可能不止一个,也可能没有众数。 复式折线统计图

综合应用 打电话的最优方案

中位数的求法:1、按大小排列。

2、如果数据的个数是单数,那么最中间的那个数就是中位数; 如果数据的个数是双数,那么最中间的那两个数的平均数就是中位数。

平均数的求法:总数÷总份数=平均数

八 数学广角找次品

数目与测试的次数的关系:2~3个物体,保证能找出次品需要测的次数是1次 4~9个物体,保证能找出次品需要测的次数是2次 10~27个物体,保证能找出次品需要测的次数是3次 28~81个物体,保证能找出次品需要测的次数是4次 82~243个物体,保证能找出次品需要测的次数是5次

244~729个物体,保证能找出次品需要测的次数是6次

五年级下册数学总结。

1、数的认识(整数和小数、数的整除、分数百分数)

知识要点包括“数的意义”、“数的读法与写法”、“数的改写”、“数的大小比较”、“数的整除”“小数、分数、百分数的互化”“约分和通分”等知识点。 重点确定在数的意义概念的理解,数的读写,数的整除。

本部分重点加强数学基本概念和基本性质的理解和掌握。具体通过一系列的练习,如填空题、选择题、判断题为主,适当穿插进行整数和小数的简单计算、约分和通分练习。复习本部分知识教师应该根据学生的实际学习水平灵活处理,对于班级基础较差的学生可适当放慢,万事开头难,本部分知识必须做到教一点使学生会一点,切忌贪多图快。复习题可参考以前的专项复习题或专项复习试卷。

2、四则运算(四则运算的意义与法则、运算定律与简便计算、四则混合运算、简易方程)。

这节重点四则运算和简便运算上。 全面概括四则运算和计算方法,提高计算水平和计算能力,包括“四则运算的意义和法则”、“四则混合运算”。 利用运算定律,掌握简便运算,提高计算效率,包括“运算定律和简便运算”。 结合教材按照先复习(整数、小数、分数)四则运算意义和运算法则,要求教师结合教材必须搞好学生相关的口算训练和基本的四则运算练习,然后再复习(整数、小数、分数)的四则混合运算,教师要加强四则混合运算中运算顺序的教学,在此基础上教师要精心设计练习,提高学生综合计算能力

3、量的计量

本节重点放在名数的改写和实际观念上。

(1)、整理量的计量知识结构,包括“长度、面积、体积单位”、“重量与时间单位”。

(2)、巩固计量单位,强化实际观念,包括“名数的改写”。

(3)、综合训练与应用,练习题可刻印或参考试卷。

4、几何初步知识(线和角、平面图形、立体图形)

本节重点放在对特征的辨析和对公式的应用上。

(1)、强化概念理解和系统化,包括“平面图形的特征”、“立体图形的特征”。

(2)、准确把握图形特征,加强对比分析,揭示知识间的联系与区别,包括“平面图形的周长与面积”、“立体图形的表面积和体积”。

(3)、加强对公式的应用,提高掌握计算方法。能让学生对周长、面积、体积进行的正确计算。

(4)、整体感知、实际应用。

练习题可刻印或参考试卷。

5、比和比例(比的意义和性质、比例的意义和性质、正比例和反比例)

本部分要求学生掌握比和比例意义和性质的同时,必须做到使学生正确辨析概念,加深理解,包括“比和比例”、“正比例和反比例”,会判断简单的正、反比例。重点要求学生掌握求比值、化简比,按比例分配,应用比例尺计算,解比例。在练习中很抓解题训练,提高解方程和解比例的能力,包括“简易方程”、“解比例”。

练习题可刻印或参考试卷。

6、简单的统计

本节重点结合考纲要求应放在对图表的认识和理解上,能回答一些简单的问题。

(1)、求平均数的方法。

(2)、加深统计图表的特点和作用的认识,包括“统计表”、“统计图”。

(3)、进一步对图表分析和回答问题,包括填图和根据图表回答问题。(本部分是复习的重点)

练习题可参考教材或试卷。

7、应用题解(整数和小数应用题、分数和百分数应用题、列方程解应用题、比和比例应用题)

这部分重点应放在应用题的分析和解题技能的发展上,难点内容是分数应用题。

(1)、简单应用题的分析与整理。 (一步计算)

(2)、复合应用题的分析与整理。 (两步以上)

(3)、列方程解应用题的分析与整理。

(4)、分数应用题的分析与整理。(重点)

(5)、用比例知识解答应用题的分析与整理。

(6)、应用题的综合训练 。

五年级下册数学知识点归类

这会不会有点多,我打字慢

数学五年级上册人教版知识点归纳 15条

小学五年级数学上册复习知识点归纳总结

第一单元小数乘法

1.小数乘法计算方法:按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

2、一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。

3、求近似数的方法一般有三种:

⑴四舍五入法 (常用) ; ⑵进一法; ⑶去尾法

4、计算钱数,保留两位小数,表示精确到分。保留一位小数,表示精确到角。

5、小数四则运算顺序跟整数四则运算顺序是一样的。

6、运算定律和性质:

加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)

乘法:乘法交换律:a×b=b×a

乘法结合律:三个数相乘,先把前两个数相乘,再和最后一个数相乘,或先把后两个数相乘,再和第一个数相乘,积不变. (a×b)×c=a×(b×c)

乘法分配律:两个数的和(或者差)同一个数相乘,可以先把这两个数(或者被减数与减数)分别同这个数相乘,再相加(或者再相减)。 (a+b)×c=a×c+b×c或 (a-b)×c=a×c-b×c

减法性质:从一个数里连续减去两个数,我们可以减去两个减数的和,或者交换两个减数的位置。 a-b-c=a-(b+c) a-b-c=a-c-b

除法性质:从一个数里连续除数两个数,我们可以除以两个除数的积,或者交换两个除数的位置。a÷b÷c=a÷(b×c) a÷b÷c=a÷c÷b

去括号: 括号前是加号的,去掉括号后,括号内的符号不变号;括号前是减号的,去掉括号后,括号内的符号要变号。

a+(b-c)=a+b-c a-(b-c)=a-b+c

第二单元小数除法

9、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

10、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数(把小数点向右移动相同的位数),使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

注意:向右移动小数点时,如果被除数的位数不够,在被除数的末尾用0补足。

12、除法中的变化规律:①商不变性质:被除数和除数同时乘或除以同一个数(0除外),商不变。②除数不变,被除数乘或除以几,商随着乘或除以几。③被除数不变,除数乘或除以几,商就除以或乘几。④被除数大于除数,商就大于1;被除数小于除数,商就小于1。⑤一个数除以大于1的数,商就小于被除数;一个数除以小于1的数,商就大于被除数。⑥积不变性质:一个因数乘一个数,另一个除以同一个数(0除外),积不变。⑦一个因数不变,另一个数乘几,积就乘几。⑧一个因数不变,另一个因数除以几,积就除以几。

13、一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。 X

一个循环小数的小数部分,依次不断重复出现的数字。(如6.321321…的循环节是321,简便记法为6.321;如0.33…的循环节是3,简便记法为0.3。)循环小数是无限小数,无限小数不一定是循环小数。

14、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。无限小数分为无限循环小数和无限不循环小数。

第三单元观察物体

15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面,最少看到一个面。圆柱体从上面看到的形状是圆形,从其他方向看到的是长形或正方形。球体无论从哪个角度看,看到的形状都是圆形。

第四单元简易方程

16、在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写。加号、减号、除号以及数与数之间的乘号不能省略。

17、a×a可以写作a•a或a ,a 读作a的平方 2a表示a+a

(1a=a这里的“1”我们不写)

18、方程:含有未知数的等式称为方程(★方程必须满足的条件:必须是等式 必须有未知数,两者缺一不可)。使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。

19、解方程原理:天平平衡

等式性质一:方程两边同时加上或减去同一个数,左右两边仍然相等。等式性质二:方程两边同时乘或除以同一个不为0数,左右两边仍然相等。

21、所有的方程都是等式,但等式不一定都是方程。

22、方程的检验过程:方程左边 = 方程右边

23、方程的解是一个数; 解方程式是一个计算过程。 所以,X=…是方程的解。

常见的等量关系:①路程=速度×时间

②工作总量=工作效率×工作时间

③总价=单价 × 数量

第五单元多边形的面积

23、长方形周长=(长+宽)×2 字母公式:C=(a+b)×2

长方形面积=长×宽 字母公式:S=ab

正方形周长=边长×4 字母公式:C=4a

正方形面积=边长×边长 字母公式:S=a2

平行四边形的面积=底×高 字母公式: S=ah

三角形的面积=底×高÷2 字母公式: S=ah÷2

(三角形的底=面积×2÷高; 三角形的高=面积×2÷底)

梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2(上底=面积×2÷高-下底,下底=面积×2÷高-上底;

高=面积×2÷(上底+下底) )

25、三角形面积公式推导: 平行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个平行四边形,

长方形的长相当于平行四边形的底;长方形的宽相当于平行四边形的高;因为长方形面积=长×宽,所以平行四边形面积=底×高,长方形的面积等于平行四边形的面积。 平行四边形的底相当于三角形的底;平行四边形的高相当于三角形的高;平行四边形的面积等于等底等高三角形面积的2倍。

27两个完全一样的梯形可以拼成一个平行四边形。

平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2

28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;

等底等高的平行四边形面积是三角形面积的2倍。

29、长方形框架拉成平行四边形,周长不变,面积变小。

第六单元统计与可能性

31、平均数=总数量÷总份数

32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。

第七单元数学广角

33、数不仅可以用来表示数量和顺序,还可以用来编码。

34、邮政编码:由6位组成,前2位表示省(直辖市、自治区)

0 5 4 0 0 1

前3位表示邮区, 前4位表示县(市),最后2位表示投递局

35、身份证18位,如130521197803010019

13表示河北省 05表示邢台市 21表示邢台县 19780301是出生日期 001是顺序码 9校验码

倒数第二位的数字用来表示性别,单数表示男,双数表示女。

相关阅读

热门文章

  • 精讲精练8上数学,8年级数学精讲精练答案?

  • 谁知道关于八年级数学下册的内容??? §2.3 运用公式法 一、教学目标 1. 经历通过整式乘法的平方差、完全平方公式逆向得出公式法分解因式的方法的过程,发展学生的逆向思维。 2.

最新文章

  • cpa班,注册会计师培训需要多少钱

  • 注册会计师培训需要多少钱 注册会计师培训价格一般在2K~3W不等,不管去哪里大致价格都在这个区间里几百块的你也别信了,小心被骗,注会本身就是含金量挺高的证书,培训价格不会
  • 六年级数学下册,六年级下册所有数学公式

  • 六年级下册所有数学公式 1、三角形的面积=底×高÷2 公式 S= a×h÷2 2、正方形的面积=边长×边长 公式 S= a×a 3、长方形的面积=长×宽 公式 S= a×b 4、平行四边形的面积=底×高 公式
  • 中考语文考什么题型,中考语文题型都是什么

  • 中考语文题型都是什么 中考语文试卷可以把它分为八块,基础知识题、科技文阅读、文言文选择题、文言文翻译、诗歌鉴赏题、现代文阅读、语言表达题和作文。 一,基础知识题:这
  • 通假和假借,如何区别假借与通假

  • 如何区别假借与通假 所谓通假字,就是音同音近的替代字。确切一点,就是用音同音近的字代替本字的用字现象。 第一,通假字的主要特点是,通假字和被通假字(本字)在读音上相
  • 金科玉律小说,金科玉律txt全集下载

  • 金科玉律txt全集下载 金科玉律 txt全集小说附件已上传到百度网盘,点击免费下载: 内容预览: 各位读者朋友们好!自投票送分行动以来,深感对诸位亲爱读者的微薄回馈不足以答谢各